
Abstract. The direct self-consistent-®eld (SCF) method
recalculates all two-electron integrals each time they are
needed in an SCF calculation. This perspective article
discusses how the original paper on direct SCF by
AlmloÈ f et al. developed the principles by which this
could be made e�cient and thereby provided an example
of the semantic approach to computational chemistry in
which algorithm development and coding are not
compartmentalized.

Key words: Computational chemistry ± Direct
self-consistent ®eld method ± Molecular orbital ±
Quantum mechanics ± Two-electron integrals

Modern computational chemistry has come a long way.
In the early days the advances often came by applying
computers syntactically to algorithms that provided
literal translations of theories developed without regard
to computing platforms; however, such an approach
would now be very old-fashioned. A modern computa-
tion has several distinct elements:

1. Fundamental equations. The underlying funda-
mental equations, sometimes called the ®rst principles,
are well known: Hamilton's equations, the Maxwell
equations, the Liouville equation, and the SchroÈ dinger
equation were all well known by the 1920s and well in-
tegrated by the 1930s [1]. Feynman's path integral ap-
proach to quantum mechanics and statistical mechanics
[2] was well appreciated by the 1960s.

2. Theory. Usually we do not solve the fundamental
equations directly. We use a theory, for example, Har-
tree±Fock theory [3], Mùller-Plesset perturbation theory
[4], coupled-cluster theory [5], Kohn's [6, 7], Newton's
[8], or Schlessinger's [9] variational principle for scat-
tering amplitudes, the quasiclassical trajectory method
[10], the trajectory surface hopping method [11], classical
S-matrix theory [12], the close-coupling approximation

[13±16], transition-state theory [17], variational-transi-
tion-state theory [18], self-consistent reaction-®eld the-
ory [19], and so forth. Some of these theories date back
to the 1930s, and new ones are continually being devel-
oped.

3. Algorithms. Most theories consist of di�erential or
integral equations, sometimes integrodi�erential equa-
tions, and these may be linear or nonlinear and are al-
most always multidimensional. Usually we cannot solve
them by the classical, analytical methods of mathemat-
ics. Instead we reduce them to numerical algorithms,
typically involving interpolation, extrapolation, quad-
rature, linear algebra, iteration, Monte Carlo sampling,
and other general techniques. Prior to the days of au-
tomatic computing machines, this was the last step. For
example, some of the early solutions to the Hartree±
Fock equations were carried out using pencil and paper
by Hartree's father, a retired sea captain, but he did not
submit any articles about computational strategies to a
scienti®c journal. Now, however, step 4 is a sine qua
non, and the process of creating the program often
entails as much research as developing the algorithm.

4. Software. To get numbers, one must convert the
algorithm to a working computer program. In modern
computational chemistry there are many opportunities
for improved theories and improved algorithms, but
more and more it is becoming clear that there is room
for systematic, scienti®c progress in step 4 as well as in
steps 2 and 3. In fact, treating step 4 as an afterthought
no longer constitutes state-of-the-art work.

One of the ®rst consequences of the increasing
prominence of step 4 was to provide feedback to step 3
and promote the introduction of new algorithms. For
example, the Monte Carlo method [20] of integration,
unlike Gaussian quadrature or the Runge±Kutta algo-
rithm, is hardly conceivable without computers. Other
examples are the Cannon algorithm [21] or Strassen's
algorithm [22, 23] for matrix multiplication or for the
matrix multiplication steps in matrix inversion carried
out by a matrix-times-vector formulation [22, 24]. In

Perspective

Perspective on ``Principles for a direct SCF approach
to LCAO-MO ab initio calculations''

AlmloÈ f J, Faegri K Jr, Korsell K (1982) J Comput Chem 3:385±399

Donald G. Truhlar

Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA

Received: 24 February 1999 / Accepted: 1 July 1999 / Published online: 4 October 1999

Theor Chem Acc (2000) 103:349±352
DOI 10.1007/s002149900072



comparing the Monte Carlo, Cannon, and Strassen
algorithms to their traditional counterparts, one is
inevitably forced to consider the details of a given
computer architecture, especially its ability to perform
computational steps in parallel or in pipelines and also
to consider any communication bottlenecks that may
arise in trying to take advantage of such parallelism.
This has led to the emergence of parallel computation as
a well-recognized ®eld of study, with its own internal
rules and dynamics. Parallel computation is a sub®eld of
the broader emerging ®eld of scienti®c computation.

At what point did the ®eld of computational chem-
istry emerge as a distinct sub®eld of scienti®c computa-
tion? I would say that this occurred gradually, but
certain milestones can be recognized. These milestones
occurred whenever chemists recognized a new tradeo�
(such as computation speed versus communication
speed) that needed to be considered in applying state-
of-the-art computer hardware to solve more challenging
chemical problems. Usually (but not always) the chal-
lenge comes from increasing the size of the system.

When one takes a step back to gain a broader view,
one ®nds that chemists, more than other computational
scientists, have been stymied by memory bottlenecks.
These were severe already in the 1960s, and by the 1980s
it was very clear that many large-system calculations
that were a�ordable in terms of computer time were not
doable simply for lack of storage space to hold all the
intermediate results. This was true especially for elec-
tronic structure calculations, where the aggravating
quantities were two-electron integrals. As a student one
quickly learned that the number of two-electron inte-
grals in a calculation with N orbitals (this number scales
as N4 for large N). Then, if you knew how many inte-
grals ®tted on a 2400 foot tape, you could calculate how
many tapes you needed. I have selected the paper by
AlmloÈ f, Faegri, and Korsell [25] for this perspective
because it provided the ®rst systematic attack on the
memory bottleneck in computational chemistry and
thereby, in my opinion, opened many people's eyes to
the possibilities for progress if one rethinks the way one
marshals the available computer resources to attack a
computational problem. As one pursues this kind of
thinking, the boundaries between theory, algorithms,
and software actually begin to blur.

The desirability of blurring the boundary was made
especially clear in the early days of vector computing
by Kascic [26], who popularized the semantic approach
to vectorization, which was the ®rst form of parallel
computing to bene®t from systematic development. As
Kascic pointed out, there are two ways to arrive at a
vectorized algorithm. In the syntactic approach, we
convert the physical problem into an algorithm (usually
conceptualized as a scalar algorithm in those days), then
we vectorize the algorithm. In the semantic approach, we
proceed from the physical problem to the vectorized
algorithm. It is like the di�erence between thinking in
English and then translating into a foreign language or
thinking directly in a foreign language. This merging of
the design of step 3 (algorithm) and step 4 (computer
code) is now well established for parallel computing. The
paper by AlmloÈ f et al. provides an analogous example of

the bene®ts of redesigning the algorithm with the hard-
ware capabilities in mind, but here the issue is the bal-
ance of computer speed with memory capacity, whereas
in much parallel computation design the issue is
balancing computer speed with communication speed.
These issues are of course related since, if one is willing
to tolerate slower access to data, one can store more of
it. The capacity of the arithmetic registers is very low,
level-2 cache is faster but is still very limited, high-speed
memory is slower but larger, disk has a big latency cost
but is even larger, and tape libraries still provide the
largest, slowest storage capacity.

The method proposed by AlmloÈ f et al. is called the
direct self-consistent-®eld (SCF) method. It is the basis
of virtually every large SCF-type calculation (Hartree±
Fock or density functional theory) that is run today. It
was motivated by the unsymmetrical rate of advance in
central processor (CPU) technology and storage tech-
nologies. Originally CPU time was expensive, so each
two-electron integral was saved and reused every time it
was needed. Eventually though, as system size increased,
these integrals had to be ``out of core,'' typically on
disks, and the time and e�ort to store them and the load
that their retrieval placed on input/output capacity
became the real bottleneck. The proposed solution is
simply to recalculate the integrals every time they are
needed rather than to store them and recycle them. The
obvious drawback is that one increases the computer
time, and the key advances were to ameliorate this
problem. There were ®ve elements in this:

1. As soon as one decides not to store and retrieve the
integrals, one recognizes that one need not compute,
store, retrieve, and use them in an order that makes re-
trieval e�cient; rather one can restructure the algorithm
for better CPU e�ciency [27]. In particular one can
switch to an integral-driven order of events. When an
integral is calculated it should be used to the maximum
possible extent.

2. In some implementations, direct methods place a
greater premium on the use of symmetry [28] to identify
integrals with permuted indices that are identical to each
other and rearranging the algorithm to take advantage
of that. (In other implementations the direct method
diminishes rather than increases the importance of
symmetry.)

3. Direct methods place a renewed emphasis on de-
creasing the number of SCF cycles by improving the
iterative strategy [29].

4. Emphasis on the new integral bottleneck made one
realize that not all integrals need be calculated after all
[30]. One can devise e�cient upper-bound estimates, and
these can be used to prescreen the integrals. If the in-
expensive estimate of the upper bound indicates that the
integral will be negligible, the more expensive evaluation
of the integral itself is omitted. Eventually a considerable
amount of sophistication can be built into the pre-
screening process [31, 32].

5. Sometimes one does not need an integral, not be-
cause it is small, but because it will only be multiplied by
small numbers in the rest of the calculation. In SCF
calculations, the integrals are multiplied by density ma-
trix elements; thus the magnitudes of the corresponding

350



density matrix elements are also used in deciding
whether to calculate a particular integral. In particular
one calculates a bound on the error in a Fock matrix
element due to not calculating an integral [25]. Density-
weighted integral estimates reduce the complexity of
integral evaluation from O(N4) to O(N2) [33]. At an even
higher level of sophistication one recognizes that only
those integrals are required that are related to signi®cant
changes in the density matrix from one iteration to the
next.

All these kinds of considerations get ampli®ed as one
proceeds to use direct methods in a wider context, for
example, for energy gradients and Hessians [34], for
linear scaling algorithms [35±38], or for relativistic
e�ects [39]. Direct SCF methods are very well suited
for parallel computation [40±42]. In addition the whole
process of rearranging the algorithms makes one rethink
the semantics of the problem in a very fruitful and
stimulating way; such bene®ts would be missed if one
simply syntactically translated the traditional algorithm
into computer code.

Two other interesting algorithmic consequences of
direct methods for quantum chemistry may be men-
tioned. First, viewing electron repulsion integrals as only
intermediates on the way to the ®nal results of interest
(Fock matrix, energy, forces) has had snowballing con-
sequences in electronic structure theory. The work of
White and co-workers on fast multipole methods [43, 44]
and J-matrix engines [45] are examples of more drasti-
cally rede®ning the intermediates. Second, optimizing
the algorithm to the computer architecture can be use-
fully generalized as follows: given particular amounts
of memory and disk, with given access rates, design
the algorithm with the shortest time-to-solution. This
has been pursued in so-called semidirect methods for
second-order Mùller±Plesset theory [46].

The ideas behind direct SCF calculations are also
echoed in various ways in more far-a®eld areas of re-
search. A very literal analog comes in basis-set ap-
proaches to scattering calculations [6±9] where we have
explored [47] the tradeo� between recalculating integrals
versus writing them to disk. A less obvious analog oc-
curs in an optimized quadrature scheme [48] we devel-
oped. The widespread use of Gaussian quadrature
formulas owes to their general e�ciency for a wide
variety of integrands. In some cases though there are
tremendous cost savings by using more specialized
quadrature formulas derived speci®cally for problem-
speci®c functions that occur in a large number of inte-
grals in a speci®c calculation. Modern computers can
easily store large numbers of function-speci®c quadra-
ture weights. If this allows one to decrease the number of
quadrature points by a factor of 2 or 3 per dimension it
can make not doable problems doable [49], for a cost of
a few thousand storage locations. This would have been
a considerable cost on the computer I used as a graduate
student (total storage = 32K words), but is hardly
worth a second thought now.

I hope this perspective conveys some of the bene®ts
that can accrue from taking a more holistic view of the
computational process and letting hardware consider-
ations become more strongly coupled to algorithm

design. This is the critical step in developing computa-
tional chemistry into a master discipline that integrates
theoretical chemistry with scienti®c computation. I be-
lieve that the paper by AlmloÈ f, Faegri, and Korsell
provides a classic example of this kind of development.

Acknowledgements. I am grateful to Matt Challacombe, Martin
Head-Gordon, Knut Faegri, Eric Schwegler, David Schwenke, and
Peter Taylor for comments on the manuscript.

References

1. Tolman RC (1938) The principles of statistical mechanics.
Oxford University Press, New York

2. Feynmann RP (1972) Statistical mechanics. Addison-Wesley,
Reading

3. Fock V (1930) Z Phys 62: 795
4. Mùller C, Plesset MS (1934) Phys Rev 46: 618
5. Bartlett RJ, Dykstra CE, Paldus J (1984) In: Dykstra C (ed)

Advanced theories and computational approaches to the
electronic structure of molecules, Reidel, Dordrecht, p 127

6. Kohn W (1948) Phys Rev 74: 1763
7. Truhlar DG, Abdallah J Jr, Smith RL (1974) Adv Chem Phys

25: 211
8. Newton RG (1966) Scattering theory of waves and particles,

McGraw-Hill, New York
9. Schlessinger L (1968) Phys Rev 167: 1411
10. Karplus M, Porter RN, Sharma RD (1965) J Chem Phys 43:

3259
11. Tully JC (1998) In: Thompson DL (ed) Modern methods for

multidimensional dynamics computations in chemistry. World
Scienti®c, Singapore, p 34

12. Miller WH (1974) Adv Chem Phys 25: 69
13. Massey HSW, Smith RA (1933) Proc R Soc London Ser A142:

142
14. Wheeler JA (1937) Phys Rev 52: 1083
15. Lane NF, Geltman S (1967) Phys Rev 160: 53
16. Allison AC, Dalgarno A (1967) Proc Phys Soc 90: 609
17. Eyring H (1935) J Chem Phys 3: 107
18. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35: 159
19. Rinaldi D, Rivail JL (1973) Theor Chim Acta 32: 57
20. Siepmann JI (1999) Adv Chem Phys 105: 1
21. Cannon L (1969) Ph D thesis. Montana State University,

Bozeman
22. Strassen V (1969) Numer Math 13: 354
23. Bailey D (1988) SIAM J Sci Stat Comput 9: 603
24. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992)

Numerical recipes in FORTRAN, 2nd edn. Cambridge Uni-
versity Press, Cambridge, p 95

25. AlmloÈ f J, Faegri K Jr, Korsell K (1982) J Comput Chem 3: 385
26. Kascic MJ Jr (1983) Semantic and syntactic vectorization:

whence cometh intelligence in supercomputing? Summer Com-
puter Simulation Conference, Vancouver

27. AlmloÈ f J, Faegri K Jr (1990) In: Carbo R, Klobukowski M (eds)
Self-consistent ®eld: theory and applications. Elsevier, Amster-
dam, p 195

28. AlmloÈ f JE (1997) Theor Chem Acc 97: 10
29. Pulay P (1980) Chem Phys Lett 73: 393
30. AlmloÈ f J, Taylor PR (1984) In: Dykstra C (ed) Advanced

theories and computational approaches to the electronic struc-
ture of molecules. Reidel, Dordrecht, p 107

31. HaÈ ser M, Ahlrichs R (1989) J Comput Chem 10: 104
32. Ruud K, Jonsson D, Norman P, Agren H, Save T, Jensen HJA,

Dahle P, Helgaker T (1998) J Chem Phys 108: 7973
33. Strout DL, Scuseria GE (1995) J Chem Phys 102: 8448
34. Helgaker T, Jùrgensen P (1992) In: Wilson S, Diercksen GHF

(eds) Methods in computational molecular physics. Reidel,
Dordrecht, p 353

35. Challacombe M, Schwegler E, AlmloÈ f J (1996) J Chem Phys
104: 4685

351



36. Yang W, Perez-Jorda JM (1998) In: Schleyer PvR, Allinger,
NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III,
Schreiner PR (eds) Encyclopedia of computational chemistry.
Wiley, Chichester, p 1496

37. White CA, Johnson BG, Gill PMW, Head-Gordon M (1994)
J Chem Phys 230: 8

38. Ochenfeld C, White CA, Head-Gordon M (1998) J Chem Phys
109: 1663

39. Laerdahl JK, Save T, Faegri K Jr (1997) Theor Chem Acc 97:
177

40. LuÈ thi HP, AlmloÈ f J (1993) Theor Chim Acta 84: 289
41. LuÈ thi HP, Mertz JE, Feynmann MW, AlmloÈ f JE (1992)

J Comput Chem 113: 160
42. Petterson LGM, Faxen T (1993) Theor Chim Acta 85: 345

43. White CA, Johnson BG, Gill PMW, Head-Gordon M (1994)
Chem Phys Lett 230: 8

44. White CA, Johnson BG, Gill PMW, Head-Gordon M (1996)
Chem Phys Lett 253: 268

45. White CA, Head-Gordon M (1996) J Chem Phys 104: 2620
46. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett

166: 281
47. Schwenke DW, Mladenovic M, Zhao M, Truhlar DG, Sun Y,

Kouri DJ (1989) In: LaganaÁ A (ed) Supercomputer algorithms
for reactivity, dynamics, and kinetics of small molecules.
Kluwer, Dordrecht, p 191

48. SchwenkeDW,TruhlarDG(1984)ComputPhysCommun34: 57
49. Schwenke DW, Truhlar DG (1985) In: Numrich RW (ed)

Supercomputer applications. Plenum, New York, p 215

352


